Update lcms (#544)
[openjpeg.git] / thirdparty / liblcms2 / src / cmswtpnt.c
1 //---------------------------------------------------------------------------------
2 //
3 //  Little Color Management System
4 //  Copyright (c) 1998-2016 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26
27 #include "lcms2_internal.h"
28
29
30 // D50 - Widely used
31 const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
32 {
33     static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};
34
35     return &D50XYZ;
36 }
37
38 const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
39 {
40     static cmsCIExyY D50xyY;
41
42     cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());
43
44     return &D50xyY;
45 }
46
47 // Obtains WhitePoint from Temperature
48 cmsBool  CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
49 {
50     cmsFloat64Number x, y;
51     cmsFloat64Number T, T2, T3;
52     // cmsFloat64Number M1, M2;
53
54     _cmsAssert(WhitePoint != NULL);
55
56     T = TempK;
57     T2 = T*T;            // Square
58     T3 = T2*T;           // Cube
59
60     // For correlated color temperature (T) between 4000K and 7000K:
61
62     if (T >= 4000. && T <= 7000.)
63     {
64         x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
65     }
66     else
67         // or for correlated color temperature (T) between 7000K and 25000K:
68
69         if (T > 7000.0 && T <= 25000.0)
70         {
71             x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
72         }
73         else {
74             cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
75             return FALSE;
76         }
77
78         // Obtain y(x)
79
80         y = -3.000*(x*x) + 2.870*x - 0.275;
81
82         // wave factors (not used, but here for futures extensions)
83
84         // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
85         // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
86
87         WhitePoint -> x = x;
88         WhitePoint -> y = y;
89         WhitePoint -> Y = 1.0;
90
91         return TRUE;
92 }
93
94
95
96 typedef struct {
97
98     cmsFloat64Number mirek;  // temp (in microreciprocal kelvin)
99     cmsFloat64Number ut;     // u coord of intersection w/ blackbody locus
100     cmsFloat64Number vt;     // v coord of intersection w/ blackbody locus
101     cmsFloat64Number tt;     // slope of ISOTEMPERATURE. line
102
103     } ISOTEMPERATURE;
104
105 static ISOTEMPERATURE isotempdata[] = {
106 //  {Mirek, Ut,       Vt,      Tt      }
107     {0,     0.18006,  0.26352,  -0.24341},
108     {10,    0.18066,  0.26589,  -0.25479},
109     {20,    0.18133,  0.26846,  -0.26876},
110     {30,    0.18208,  0.27119,  -0.28539},
111     {40,    0.18293,  0.27407,  -0.30470},
112     {50,    0.18388,  0.27709,  -0.32675},
113     {60,    0.18494,  0.28021,  -0.35156},
114     {70,    0.18611,  0.28342,  -0.37915},
115     {80,    0.18740,  0.28668,  -0.40955},
116     {90,    0.18880,  0.28997,  -0.44278},
117     {100,   0.19032,  0.29326,  -0.47888},
118     {125,   0.19462,  0.30141,  -0.58204},
119     {150,   0.19962,  0.30921,  -0.70471},
120     {175,   0.20525,  0.31647,  -0.84901},
121     {200,   0.21142,  0.32312,  -1.0182 },
122     {225,   0.21807,  0.32909,  -1.2168 },
123     {250,   0.22511,  0.33439,  -1.4512 },
124     {275,   0.23247,  0.33904,  -1.7298 },
125     {300,   0.24010,  0.34308,  -2.0637 },
126     {325,   0.24702,  0.34655,  -2.4681 },
127     {350,   0.25591,  0.34951,  -2.9641 },
128     {375,   0.26400,  0.35200,  -3.5814 },
129     {400,   0.27218,  0.35407,  -4.3633 },
130     {425,   0.28039,  0.35577,  -5.3762 },
131     {450,   0.28863,  0.35714,  -6.7262 },
132     {475,   0.29685,  0.35823,  -8.5955 },
133     {500,   0.30505,  0.35907,  -11.324 },
134     {525,   0.31320,  0.35968,  -15.628 },
135     {550,   0.32129,  0.36011,  -23.325 },
136     {575,   0.32931,  0.36038,  -40.770 },
137     {600,   0.33724,  0.36051,  -116.45  }
138 };
139
140 #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
141
142
143 // Robertson's method
144 cmsBool  CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
145 {
146     cmsUInt32Number j;
147     cmsFloat64Number us,vs;
148     cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
149     cmsFloat64Number xs, ys;
150
151     _cmsAssert(WhitePoint != NULL);
152     _cmsAssert(TempK != NULL);
153
154     di = mi = 0;
155     xs = WhitePoint -> x;
156     ys = WhitePoint -> y;
157
158     // convert (x,y) to CIE 1960 (u,WhitePoint)
159
160     us = (2*xs) / (-xs + 6*ys + 1.5);
161     vs = (3*ys) / (-xs + 6*ys + 1.5);
162
163
164     for (j=0; j < NISO; j++) {
165
166         uj = isotempdata[j].ut;
167         vj = isotempdata[j].vt;
168         tj = isotempdata[j].tt;
169         mj = isotempdata[j].mirek;
170
171         dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);
172
173         if ((j != 0) && (di/dj < 0.0)) {
174
175             // Found a match
176             *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
177             return TRUE;
178         }
179
180         di = dj;
181         mi = mj;
182     }
183
184     // Not found
185     return FALSE;
186 }
187
188
189 // Compute chromatic adaptation matrix using Chad as cone matrix
190
191 static
192 cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
193                                 const cmsCIEXYZ* SourceWhitePoint,
194                                 const cmsCIEXYZ* DestWhitePoint,
195                                 const cmsMAT3* Chad)
196
197 {
198
199     cmsMAT3 Chad_Inv;
200     cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
201     cmsVEC3 ConeDestXYZ, ConeDestRGB;
202     cmsMAT3 Cone, Tmp;
203
204
205     Tmp = *Chad;
206     if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;
207
208     _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
209                              SourceWhitePoint -> Y,
210                              SourceWhitePoint -> Z);
211
212     _cmsVEC3init(&ConeDestXYZ,   DestWhitePoint -> X,
213                              DestWhitePoint -> Y,
214                              DestWhitePoint -> Z);
215
216     _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
217     _cmsMAT3eval(&ConeDestRGB,   Chad, &ConeDestXYZ);
218
219     // Build matrix
220     _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0],    0.0,  0.0);
221     _cmsVEC3init(&Cone.v[1], 0.0,   ConeDestRGB.n[1]/ConeSourceRGB.n[1],   0.0);
222     _cmsVEC3init(&Cone.v[2], 0.0,   0.0,   ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
223
224
225     // Normalize
226     _cmsMAT3per(&Tmp, &Cone, Chad);
227     _cmsMAT3per(Conversion, &Chad_Inv, &Tmp);
228
229     return TRUE;
230 }
231
232 // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
233 // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
234 cmsBool  _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
235 {
236     cmsMAT3 LamRigg   = {{ // Bradford matrix
237         {{  0.8951,  0.2664, -0.1614 }},
238         {{ -0.7502,  1.7135,  0.0367 }},
239         {{  0.0389, -0.0685,  1.0296 }}
240     }};
241
242     if (ConeMatrix == NULL)
243         ConeMatrix = &LamRigg;
244
245     return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
246 }
247
248 // Same as anterior, but assuming D50 destination. White point is given in xyY
249 static
250 cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
251 {
252     cmsCIEXYZ Dn;
253     cmsMAT3 Bradford;
254     cmsMAT3 Tmp;
255
256     cmsxyY2XYZ(&Dn, SourceWhitePt);
257
258     if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;
259
260     Tmp = *r;
261     _cmsMAT3per(r, &Bradford, &Tmp);
262
263     return TRUE;
264 }
265
266 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
267 // This is just an approximation, I am not handling all the non-linear
268 // aspects of the RGB to XYZ process, and assumming that the gamma correction
269 // has transitive property in the tranformation chain.
270 //
271 // the alghoritm:
272 //
273 //            - First I build the absolute conversion matrix using
274 //              primaries in XYZ. This matrix is next inverted
275 //            - Then I eval the source white point across this matrix
276 //              obtaining the coeficients of the transformation
277 //            - Then, I apply these coeficients to the original matrix
278 //
279 cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
280 {
281     cmsVEC3 WhitePoint, Coef;
282     cmsMAT3 Result, Primaries;
283     cmsFloat64Number xn, yn;
284     cmsFloat64Number xr, yr;
285     cmsFloat64Number xg, yg;
286     cmsFloat64Number xb, yb;
287
288     xn = WhitePt -> x;
289     yn = WhitePt -> y;
290     xr = Primrs -> Red.x;
291     yr = Primrs -> Red.y;
292     xg = Primrs -> Green.x;
293     yg = Primrs -> Green.y;
294     xb = Primrs -> Blue.x;
295     yb = Primrs -> Blue.y;
296
297     // Build Primaries matrix
298     _cmsVEC3init(&Primaries.v[0], xr,        xg,         xb);
299     _cmsVEC3init(&Primaries.v[1], yr,        yg,         yb);
300     _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg),  (1-xb-yb));
301
302
303     // Result = Primaries ^ (-1) inverse matrix
304     if (!_cmsMAT3inverse(&Primaries, &Result))
305         return FALSE;
306
307
308     _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
309
310     // Across inverse primaries ...
311     _cmsMAT3eval(&Coef, &Result, &WhitePoint);
312
313     // Give us the Coefs, then I build transformation matrix
314     _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr,          Coef.n[VY]*xg,          Coef.n[VZ]*xb);
315     _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr,          Coef.n[VY]*yg,          Coef.n[VZ]*yb);
316     _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
317
318
319     return _cmsAdaptMatrixToD50(r, WhitePt);
320
321 }
322
323
324 // Adapts a color to a given illuminant. Original color is expected to have
325 // a SourceWhitePt white point.
326 cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
327                                        const cmsCIEXYZ* SourceWhitePt,
328                                        const cmsCIEXYZ* Illuminant,
329                                        const cmsCIEXYZ* Value)
330 {
331     cmsMAT3 Bradford;
332     cmsVEC3 In, Out;
333
334     _cmsAssert(Result != NULL);
335     _cmsAssert(SourceWhitePt != NULL);
336     _cmsAssert(Illuminant != NULL);
337     _cmsAssert(Value != NULL);
338
339     if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;
340
341     _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
342     _cmsMAT3eval(&Out, &Bradford, &In);
343
344     Result -> X = Out.n[0];
345     Result -> Y = Out.n[1];
346     Result -> Z = Out.n[2];
347
348     return TRUE;
349 }
350
351